認識腦中風
腦中風是一種常見造成神經殘疾殘和致死疾病,其發生原因多樣且複雜。了解這些原因以及相應的治療方法對於預防和管理腦中風非常的重要。
腦中風原因
腦中風的原因可以分為兩大類:缺血性腦中風和出血性腦中風。缺血性腦中風是由於腦部的血液供應受到阻塞或中斷引起的,佔腦中風案例的約85%。最常見的缺血性腦中風是由於血栓形成或動脈狹窄引起的。缺血性腦中風常見的原因如下:
■ 血管硬化:長期高血壓及高血脂易造成血管硬化,失去原有的彈性,此時若血壓突然升高,會造成硬化的管壁破裂,造成腦出血。
■ 血栓形成:當血管內壁上的血栓形成或血塊形成時,它可以堵塞血管,導致腦部供血不足而壞死。這些血栓可能是由於動脈粥樣硬化 -- 即血管壁的脂質聚積和慢性發炎引起的斑塊沉積。也可能是其他原因,包括心臟病、心律不整、高血壓和糖尿病等所引起。
■ 動脈狹窄:動脈狹窄是指血管內徑變窄,限制了血液的流動。這可能是由於動脈壁的增厚、硬化或收縮引起的,進而導致腦部供血不足。
出血性腦中風是由於腦部血管破裂導致的,約佔腦中風案例的15%。常見出血性腦中風的原因包括了:
■ 腦動脈瘤:腦動脈瘤是一種血管壁的異常擴張,形成了一個血管瘤。當動脈瘤破裂時,它可以導致腦內出血,引發出血性腦中風。
■ 血管異常:腦內血管結構的異常,如動靜脈畸形等,可能導致血管破裂和出血性腦中風。
腦中風會好嗎? 腦中風治療有哪些?
腦中風治療方法的選擇取決於腦中風的類型和嚴重程度。常見的治療方法與考量如下:
■ 急性缺血性腦中風治療:對於急性缺血性腦中風患者,靜脈血栓溶解療法是一種常見的治療方法。它使用藥物(如組織型纖維蛋白溶酶原激活劑)來溶解腦部血栓,以恢復受阻的血流。然而,血栓溶解治療必須在明確知道中風症狀發生時間及發生後特定的時間內進行,並且需要嚴格的選擇標準,以避免出血併發症。
■ 急性出血性腦中風治療:對於出血性腦中風患者,治療的重點是控制出血,減少進一步的腦損傷。如果腦出血危及生命時可能需要開顱手術,手術的方式會依據腦出血的原因而訂,例如開顱減壓取血塊、動脈瘤夾取或血管畸形切除等等。手術的目標是挽救生命及防止進一步出血。
腦中風後遺症
一旦腦中風患者度過了危及生命的急性期後,接下來就是進入恢復期的治療,治療的目標放在儘早回復受損的神經功能並恢復到正常的生活。傳統上,西醫在腦中風恢復期的治療以復健為主,包括了物理治療、職能治療和語言治療的部份,然而,文獻上有一些積極的治療方法對於腦中風的恢復期有顯著的幫助,這些治療包括了經顱磁刺激、高壓氧、靜脈雷射、靜脈營養等,甚至在國外的研究顯示幹細胞外泌體對於腦中風的治療也有良好的效果。
綜上所述,腦中風的原因和治療方法非常多樣。了解這些原因有助於預防腦中風的風險。急性期及時的治療和恢復期積極的複合式治療可以最大程度地減少神經殘疾並提高患者的預後和生活品質。
Here's an introduction to the causes and treatment methods of stroke, along with references for further reading.
Stroke, also known as cerebrovascular accident (CVA), is a common debilitating and life-threatening condition. It occurs when there is an interruption of blood flow to the brain or bleeding within the brain. Understanding the causes and appropriate treatment methods for stroke is crucial for prevention and management.
The causes of stroke can be categorized into two major types: ischemic stroke and hemorrhagic stroke. Ischemic stroke, which accounts for approximately 85% of stroke cases, occurs due to a blockage or narrowing of blood vessels in the brain. Common causes include:
Thrombosis: When a blood clot forms within a blood vessel, it can obstruct blood flow, leading to inadequate blood supply to the brain. This may result from atherosclerosis, the buildup of fatty deposits and inflammation in the blood vessel walls. Other contributing factors include heart disease, hypertension, and diabetes.
Arterial Stenosis: Arterial stenosis refers to the narrowing of blood vessels, restricting blood flow. It can occur due to thickening, hardening, or constriction of the arterial walls, leading to inadequate blood supply to the brain.
Hemorrhagic stroke, which accounts for approximately 15% of stroke cases, occurs when there is bleeding within the brain. Common causes include:
Cerebral Aneurysm: Cerebral aneurysm is an abnormal dilation of a blood vessel in the brain. When an aneurysm ruptures, it can cause intracerebral bleeding, leading to a hemorrhagic stroke.
Vascular Malformation: Certain vascular abnormalities, such as arteriovenous malformation, can predispose blood vessels to rupture and result in hemorrhagic stroke.
The choice of treatment methods depends on the type and severity of the stroke. Here are some common treatment approaches:
Acute Ischemic Stroke Treatment: For patients with acute ischemic stroke, intravenous thrombolytic therapy is a commonly employed treatment method. It involves the administration of medication, such as tissue plasminogen activator (tPA), to dissolve the blood clot and restore blood flow. However, thrombolytic therapy needs to be initiated within a specific time window and requires strict eligibility criteria to avoid the risk of bleeding complications.
Hemorrhagic Stroke Treatment: For patients with hemorrhagic stroke, the focus of treatment is on controlling bleeding and minimizing further damage. This may necessitate surgical interventions, such as aneurysm repair or vascular malformation excision. The goal of surgery is to repair the blood vessel and prevent further bleeding.
Rehabilitation therapy includes physical therapy, occupational therapy, and speech therapy. However, there are some positive treatment methods in the literature that may play a role in the recovery period of stroke, these treatments include repetitive transcranial magnetic stimulation (rTMS), hyperbaric oxygen therapy(HBOT), intravenous laser (ILIB), intravenous nutrition therapy, etc. Furthermore, studies have shown that stem cells exosome is a novel treatment of stroke.
In addition to treatment, stroke prevention is of paramount importance. Adopting a healthy lifestyle can significantly reduce the risk of stroke. This includes regular exercise, balanced diet, limiting alcohol consumption, and quitting smoking. Managing chronic conditions like hypertension, diabetes, and high cholesterol levels is also critical in stroke prevention.
In conclusion, stroke has diverse causes, and understanding these causes and appropriate treatment methods is crucial for timely intervention and recovery. Through prompt thrombolytic therapy, surgical interventions, rehabilitation therapy, and maintaining a healthy lifestyle, the risk of stroke can be reduced, and the prognosis and quality of life for stroke patients can be improved.
參考文獻:
1. Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., ... & Kittner, S. J. (2018). Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation, 137(12), e67-e492.
2. Mayo Clinic. (2021). Stroke. Retrieved from https://www.mayoclinic.org/diseases-conditions/stroke/symptoms-causes/syc-20350113
3. National Institute of Neurological Disorders and Stroke. (2021). Stroke: Hope through research. Retrieved from https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/Stroke-Hope-Through-Research
4. Khedr, E. M., Etraby, A. E., Hemeda, M., & Nasef, A. M. (2010). Long-term effect of repetitive transcranial magnetic stimulation on motor function recovery after acute ischemic stroke. Acta Neurologica Scandinavica, 121(1), 30-37.
5. Avenanti, A., Coccia, M., Ladavas, E., Provinciali, L., & Ceravolo, M. G. (2012). Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology, 78(4), 256-264.
6. Kakuda, W., Abo, M., Shimizu, M., Sasanuma, J., Okamoto, T., Yokoi, A., ... & Senoo, A. (2012). A multi-center study on low-frequency rTMS combined with intensive occupational therapy for upper limb hemiparesis in post-stroke patients. Journal of Neuroengineering and Rehabilitation, 9(1), 4.
7. Kim, D. Y., Lim, J. Y., Kang, E. K., You, D. S., Oh, M. K., Oh, B. M., ... & Paik, N. J. (2010). Effect of transcranial magnetic stimulation on motor recovery in patients with subacute stroke. American Journal of Physical Medicine & Rehabilitation, 89(11), 879-886.
8. Khedr, E. M., Ahmed, M. A., Fathy, N., & Rothwell, J. C. (2005). Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology, 65(3), 466-468.
9. Doeppner, T. R., Herz, J., Görgens, A., Schlechter, J., Ludwig, A. K., Radtke, S., ... & Hermann, D. M. (2015). Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Translational Medicine, 4(10), 1131-1143.
10. Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., ... & Xuan, Y. (2013). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 31(12), 2737-2746.
11. Doeppner, T. R., Herz, J., Görgens, A., Schlechter, J., Ludwig, A. K., Radtke, S., ... & Hermann, D. M. (2015). Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Translational Medicine, 4(10), 1131-1143.
12. Xin, H., Li, Y., Cui, Y., Yang, J. J., Zhang, Z. G., & Chopp, M. (2013). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. Journal of Cerebral Blood Flow & Metabolism, 33(11), 1711-1715.
13. Zhang, Y., Chopp, M., Zhang, Z. G., Katakowski, M., Xin, H., & Qu, C. (2016). Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochemistry International, 97, 72-81.